MAFS.912.G-CO.1.1

1. Fill in the blanks:

The intersection of two noncollinear rays at a common endpoint is known as \qquad .
A \qquad is a location. It has neither shape nor size.
A flat surface made up of points that extends infinitely in all directions is a \qquad .
\qquad lines are two distinct lines that do not intersect.

MAFS.912.G-CO.1.2
2. Identify each transformation shown as a reflection, a translation, or a rotation.

MAFS.912.G-CO.2.7 and MAFS.912.G-CO.2.8

3. Determine which of the following statements are true if $\triangle C A T \cong \triangle L U V$. (This is NOT multiple choice!)
A) $\angle C \cong \angle L$
B) $\overline{C A} \cong \bar{V} \bar{U}$
C) $\angle T C A \cong \angle V L U$
D) $\overline{T A} \cong \overline{V U}$
E) $\angle T A C \cong \angle V U L$
4. Explain how to prove the two triangles congruent using SAS.

Given D is the midpoint of $\overline{B C}$.
5. What statement will be needed to prove $\angle J K L \cong \angle M N L$ congruent using ASA?

6. Which postulate or theorem can be used to prove the following triangles congruent? Write a congruence statement for each pair of triangles. (This is NOT multiple choice!)
A)

B)

C)

MAFS.912.G-CO.3.9
7. Which postulates or theorems listed can be used to prove that line a is parallel to line b ? (Select all that apply.)

$$
\begin{aligned}
& \angle 1 \cong \angle 2 \text { Alternate Interior Angles } \\
& \angle 2 \cong \angle 3 \text { Alternate Interior Angles } \\
& \angle 1 \text { and } \angle 3 \text { Supplemental Angles } \\
& \angle 1 \text { and } \angle 4 \text { Supplemental Angles } \\
& \angle 1 \cong \angle 3 \text { Corresponding Angles }
\end{aligned}
$$

8. In the drawing below, identify the following. (This is NOT multiple choice!)
A) Alternate Interior Angles
B) Alternate Exterior Angles
C) Consecutive Interior Angles
D) Corresponding Angles

MAFS.912.G-CO.3.11

9. Fill in the missing reasons of the proof.

$\overline{B C} \cong \overline{E D}$	Given
$\overline{B D} \cong \overline{E C}$	
$\overline{C D} \cong \overline{D C}$	
$\Delta B C D \cong \triangle E D C$	
$\angle B \cong \angle E$	

B

E
10. Determine whether each statement below is true or false. (This is NOT multiple choice!)
A. Parallel lines meet at exactly one point.
B. An angle bisector creates two congruent angles.
C. Corresponding parts of congruent triangles are congruent.
D. Supplemental angles have a sum of 90 degrees.
E. The altitude from the base of an isosceles triangle creates two 90 degree angles.

MAFS.912.G-CO.4.12

11. Identify the constructions shown. (This is NOT multiple choice!)
A)
B)

C)

MAFS.912.G-GPE.2.4
12.

The isosceles triangle shown is placed on a coordinate plane with the y-axis as its altitude.

Find the length of $\overline{A B}$ and the location of B, if the coordinates of A are $(-3.2,0)$.

MAFS.912.G-SRT.2.5

13.

Given rectangle DEFG.

Determine which statements are true. (This is NOT multiple choice.)
A. $D E=F G$
B. $\mathrm{FE}=\mathrm{DG}$
C. $\mathrm{FL}=\mathrm{EL}$
D. $\triangle D L F \cong \triangle E L G$
E. $\triangle D E G \cong \triangle F L G$
F. $\angle D F G$ is a right angle
14. Explain how to prove $\triangle M N P \cong \triangle A B C$.

