MAFS.912.G-CO.1.1

Fill in the blanks:

 The intersection of two noncollinear rays at a common endpoint is known as ______.
 A _______ is a location. It has neither shape nor size.
 A flat surface made up of points that extends infinitely in all directions is a ______.
 _______ lines are two distinct lines that do not intersect.

MAFS.912.G-CO.1.2

2. Identify each transformation shown as a reflection, a translation, or a rotation.

MAFS.912.G-CO.2.7 and MAFS.912.G-CO.2.8

- 3. Determine which of the following statements are true if $\triangle CAT \cong \triangle LUV$. (This is NOT multiple choice!) A) $\angle C \cong \angle L$ B) $\overline{CA} \cong \overline{VU}$ C) $\angle TCA \cong \angle VLU$ D) $\overline{TA} \cong \overline{VU}$ E) $\angle TAC \cong \angle VUL$
- 4. Explain how to prove the two triangles congruent using SAS.

5. What statement will be needed to prove $\angle JKL \cong \angle MNL$ congruent using ASA?

6. Which postulate or theorem can be used to prove the following triangles congruent? Write a congruence statement for each pair of triangles. (This is NOT multiple choice!)

MAFS.912.G-CO.3.9

7. Which postulates or theorems listed can be used to prove that line *a* is parallel to line *b*? (Select all that apply.)

- $\begin{array}{l} \label{eq:linear_linea$
- 8. In the drawing below, identify the following. (This is NOT multiple choice!)
 - A) Alternate Interior Angles
 - B) Alternate Exterior Angles
 - C) Consecutive Interior Angles
 - D) Corresponding Angles

MAFS.912.G-CO.3.11

9. Fill in the missing reasons of the proof.

Fill in the missing reasons	of the proof.	В
$ \overline{BC} \cong \overline{ED} \\ \overline{BD} \cong \overline{EC} $	Given	
$\overline{CD}\cong\overline{DC}$		
$\Delta BCD \cong \Delta EDC$		
$\angle B \cong \angle E$		
		F

- 10. Determine whether each statement below is true or false. (This is NOT multiple choice!)
 - A. Parallel lines meet at exactly one point.
 - B. An angle bisector creates two congruent angles.
 - C. Corresponding parts of congruent triangles are congruent.
 - D. Supplemental angles have a sum of 90 degrees.
 - E. The altitude from the base of an isosceles triangle creates two 90 degree angles.

MAFS.912.G-CO.4.12

- 11. Identify the constructions shown. (This is NOT multiple choice!)
 - A)

The isosceles triangle shown is placed on a coordinate plane with the y-axis as its altitude.

Find the length of \overline{AB} and the location of B, if the coordinates of A are (-3.2, 0).

MAFS.912.G-SRT.2.5

Given rectangle DEFG.

Determine which statements are true. (This is NOT multiple choice.)

Α.	DE = FG	D. $\Delta DLF \cong \Delta ELG$
В.	FE = DG	E. $\Delta DEG \cong \Delta FLG$
C.	FL = EL	F. $\angle DFG$ is a right angle

14. Explain how to prove $\Delta MNP \cong \Delta ABC$.

