\qquad

Braden River High School Algebra 2

Review Packet

For students entering Algebra 2H in August 2016

Directions:

1. In order to take full advantage of the video instruction offered by the web links provided in each section, this packet is best completed while opened on your computer.
2. Complete all exercises and bring this packet to your initial Algebra 2H class in August 2016. You may use a calculator (except when noted otherwise); but, show all work used to arrive at your answer. Expect to be quizzed on this material on a day to be announced.
3. If you need help on any of the Algebra1 topics in this packet, please refer to the following websites:

- http://coolmath.com/algebra/Algebra1/index.html
- http://www.algebra.com/
- http://www.brightstorm.com/math
- http://www.khanacademy.org

Table of Contents

1. Rules of Exponents
2. Simplifying Radicals
3. Linear Equations
4. Graphing Linear Inequalities
5. Polynomials - Add, Subtract, and Multiply
6. Factoring Polynomials

1. Order of Operations

Order of Operations - Evaluating an Expression

http://www.brightstorm.com/math/algebra/pre-algebra/order-of-operations
http://www.khanacademy.org/video/order-of-operations?playlist=Developmental\ Math
Use PEMDAS (Please Excuse My Dear Aunt Sally):
Step 1. P - Parentheses: start with operations inside grouping symbols (parentheses)
Step 2. E-Exponents: evaluate powers
Step 3. MD - Multiply/Divide: do multiplications and divisions from left to right
Step 4. AS - Add/Subtract: do additions and subtractions from left to right

$$
\begin{array}{lll}
15 \cdot 2 \div 6 & \text { Ex2) } & 3 \cdot\left(4^{2}+8\right) \div 4 \\
3 \cdot(16+8) \div 4 \\
\text { Ex1) }(15 \cdot 2) \div 6 & 3 \cdot 24 \div 4 \\
30 \div 6=5 & 72 \div 4=18 & \\
& & \begin{array}{l}
\frac{7 \cdot 4}{8+7^{2}-1} \\
\end{array} \\
& \text { Ex3) } & =\frac{7 \cdot 4}{8+49-1} \\
& & =\frac{28}{56} \\
& & =\frac{1}{2}
\end{array}
$$

1. $8 \div \frac{1}{2} \cdot 3+(6-4)$	2. $\frac{(3+2)(-8)}{(-3)^{2}+1}$	3. $3\left[2(4+1)^{2}\right]-10^{2}$
4. $\left[(9-7)^{2}+5\right]+26$	5. $\frac{8 \cdot 2+5}{12+2^{2}-9}$	$6.8+4^{3} \div 8-3$

Use Properties of Radicals to Simplify Expressions

http://www.brightstorm.com/math/algebra/radical-expressions-and-equations/simplifying-radical-expressions
http://www.khanacademy.org/video/simplifying-radicals?playlist=Pre-algebra
Product Property: The square root of a product equals the product of the square roots of the factors

$$
\text { Ex1) } \quad \sqrt{400}=\sqrt{a b}=\sqrt{a} \cdot \sqrt{b}
$$

Ex2) $\sqrt{75}=\sqrt{25 \cdot 3}=\sqrt{25} \cdot \sqrt{3}=5 \sqrt{3}$

Quotient Property: The square root of a quotient equals the quotient of the square roots of the numerator and denominator

$$
\begin{gathered}
\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}} \\
\text { Ex3) } \sqrt{\frac{9}{25}}=\frac{\sqrt{9}}{\sqrt{25}}=\frac{3}{5}
\end{gathered} \quad \text { Ex4) } \quad \sqrt{\frac{27}{16}}=\frac{\sqrt{27}}{\sqrt{16}}=\frac{\sqrt{9 \cdot 3}}{4}=\frac{\sqrt{9} \cdot \sqrt{3}}{4}=\frac{3 \sqrt{3}}{4}
$$

Simplest Form: An expression with radicals is in simplest form if the following are true:

- no perfect square factors (other than 1) are in the radicand (under the radical): $\sqrt{8} \rightarrow \sqrt{4 \cdot 2} \rightarrow 2 \sqrt{2}$
- no fractions are in the radicand (under the radical): $\sqrt{\frac{5}{16}} \rightarrow \frac{\sqrt{5}}{\sqrt{16}} \rightarrow \frac{\sqrt{5}}{4}$
- no radicals appear in the denominator of the fraction: $\frac{1}{\sqrt{5}} \rightarrow \frac{1}{\sqrt{5}} \cdot \frac{\sqrt{5}}{\sqrt{5}} \rightarrow \frac{\sqrt{5}}{\sqrt{25}}=\frac{\sqrt{5}}{5}$
[This is called "rationalizing the denominator": http://www.khanacademy.org/video/how-to-rationalize-adenominator?playlist=ck12.org\ Algebra\ 1\ Examples]

Simplify - leave answers in simplest radical from - no decimal answers.

1. $\sqrt{120}$
2. $4 \sqrt{90}$
3. $10 \sqrt{250}$
4. $\sqrt{32}$
5. $\sqrt{80}$
6. $\sqrt{125}$
7. $\sqrt{\frac{9}{81}}$
8. $\sqrt{\frac{1}{169}}$
9. $\sqrt{\frac{20}{16}}$
10. $\sqrt{\frac{9}{5}}$
11. $\sqrt{\frac{10}{15}}$
12. $\sqrt{\frac{60}{7}}$

3 Linear Equations

A. Graphing. The graph of a linear equation is a line. Here is a quick review of how to graph common forms of a linear equation.

Form 1: Horizontal Line $y=c(\mathrm{c}=$ real number $)$
The graph of $y=c$ is a horizontal line that passes through the point $(0, c)$. The equation $y=5$ is simply graphed by moving on the y-axis to the point $(0,5)$ and then drawing a horizontal line (see figure 1). Likewise, the equation $y=0$ is graphed by going to the point $(0,0)$ and drawing a horizontal line - in this case, the graph is the x-axis (see figure 2).

Figure 1
Figure 2
Figure 3
Form 2: Vertical Line $x=c(\mathrm{c}=$ real number $)$
The graph of $x=c$ is a vertical line that passes through the point $(c, 0)$. The equation $x=-3$ is simply graphed by moving on the x-axis to the point $(-3,0)$ and then drawing a vertical line (see figure 3). Likewise, the equation $x=0$ is graphed by going to the point $(0,0)$ and drawing a vertical line -in this case, the graph is the y-axis.

Form 3: Slope-Intercept $y=m x+b \quad(m=$ slope, $b=\mathrm{y}$-intercept $)$ The equation $y=2 x-3$ is in Slope-Intercept form. To graph this line, first plot the y-intercept $(0,-3)$. Then, recalling that the slope is the ratio of rise/run (2/1), find a second point on the line by going up 2 and then right 1 [to point $(1,-1)$]. Connect the points to graph the line (see figure 4).
http://www.brightstorm.com/math/algebra/linear-equations-and-their-graphs/how-to-graph-a-line-using-y-equals-mx-plus-b http://www.khanacademy.org/video/graphs-using-slope-interceptform?playlist=ck12.org\ Algebra\ 1\ Examples

Figure 4

Form 4: Point-Slope $y-y_{1}=m\left(x-x_{1}\right) \quad\left[\left(x_{1}, y_{1}\right)=\right.$ point, $m=$ slope $]$
The equation $y-2=-2(x-4)$ is in Point-Slope form. To graph this line, first plot the point $\left(x_{1}, y_{1}\right)=(4,2)$.
Then, using the slope ($-2 / 1$), find a second point on the line by going down 2 and then right 1 [to point $(5,0)$].
Connect the points to graph the line (see figure 5).
Now, consider the equation $y-2=-2(x+4)$, also in Point-Slope form. In this case, the point $\left(x_{1}, y_{1}\right)=(-4,2)$ because the equation is really $y-2=-2(x-(-4))$. Use the slope $(-2 / 1)$ to find a second point on the line by going down 2 and right 1 [to point $(-3,0)]$. Connect the points to graph the line (see figure 6).

Figure 5

Figure 6

Figure 7

Form 5: Standard Form $A x+B y=C$
The equation $2 x-3 y=12$ is in Standard form. To graph this equation you may be tempted to transform this equation into its equivalent Slope-Intercept form $y=m x+b$. Don't do it! Just find two points, the x - and y intercepts, and connect with a line. To find the x -intercept, replace y in the equation with 0 and solve for x . This gives you $2 x=12$ or $x=6$. So, the x -intercept is $(6,0)$. To find the y -intercept, replace x in the equation with 0 and solve for y. This gives $-3 y=12$ or $y=-4$. So, the y-intercept is $(0,-4)$. Plot and connect these intercepts to obtain the graph (see figure 7).
http://brightstorm.com/math/algebra/linear-equations-and-their-graphs/standard-form-of-linear-equations (see Problem 3)
Exercises: Graph each line in the space provided.

B. Finding Equations of a Line.

Given a slope and a point, find an equation of a line:

Ex7) Find an equation of the line with a slope of $2 / 3$ and containing the point $(6,-3)$.
Method I: Since the slope and a point are provided, use the Point-Slope form: $y-y_{1}=m\left(x-x_{1}\right)$
Step 1: Substitute for the given slope and point: $y-(-3)=2 / 3(x-6)$
Step 2: Simplify: $y+3=2 / 3(x-6)$

Method II: Use the Slope-Intercept form $y=m x+b$
Step 1: Substitute for the given slope: $y=(2 / 3) x+b$

$$
-3=(2 / 3)(6)+b
$$

Step 2: Find b (y-intercept) by substituting in the point: $-3=4+b$

$$
-7=b
$$

Step 3: Substitute for b into the equation from Step 1 and simplify: $y=2 / 3 x+(-7)=2 / 3 x-7$

Given two points, find an equation of a line:

Ex8) Find an equation of a line containing the points $(-3,2)$ and $(7,4)$
Step 1: Find the slope: $m=\frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{4-2}{7-(-3)}=\frac{2}{10}=\frac{1}{5}$
Step 2: Use either Method I or Method II from Example 7 above. You may use either of the two given points.

Method I (using $1^{\text {st }}$ point).

$y-(2)=1 / 5(x-(-3))$
$y-2=1 / 5(x+3)$

Method II (using 1 ${ }^{\text {st }}$ point).

$y=(1 / 5) x+b$
$2=1 / 5(-3)+b$
$2=-3 / 5+b$
$2+3 / 5=b$
$10 / 5+3 / 5=b$
$13 / 5=b \quad$ so, $y=1 / 5 x+13 / 5$
*NOTE: The above two linear equations may appear different; but, they are equivalent.
For the Method I equation: solve for $\mathrm{y}-$ - distribute the $1 / 5$ inside the parenthesis, then add 2 to the right side

$$
\begin{aligned}
y-2 & =1 / 5(x+3) \Rightarrow y-2=1 / 5 x+3 / 5 \\
y & =1 / 5 x+3 / 5+2 \Rightarrow y=1 / 5 x+3 / 5+10 / 5 \\
y & =1 / 5 x+13 / 5
\end{aligned}
$$

1. Slope of 2 and y-intercept of 1
2. Contains points $(4,-1)$ and $(1,2)$
3. Slope of -4 and point $(-6,1)$
4. Slope $\frac{3}{4}$ and a point $(4,1)$
5. Contains points $(5,6)(5,-3)$.

4. Graphing Linear Inequalities

Graphing Linear Inequalities in One Variable (in coordinate plane)

http://www.brightstorm.com/math/algebra/solving-and-graphing-inequalities/graphing-2-variable-inequalities http://www.khanacademy.org/video/graphing-inequalities-2?playlist=Developmental\ Math\ 2

Step 1. Graph the Boundary Line: $x=k$ ($\mathrm{k}=$ constant) will be a vertical line; $y=k$ will be a horizontal line.
Step 2. Use "dashed line" if < or >; use "solid line" if \leq or \geq
Step 3. Shade right (of vertical boundary line) or above (of horizontal boundary line) if $>$ or \geq Step 4. Shade left (of vertical boundary line) or below (of horizontal boundary line) if $<$ or \leq

Ex1) Graph $x \geq-4$

Ex2) Graph $3 y<18$
Solve for $\mathrm{y}: \begin{gathered}\frac{3 y}{3}<\frac{18}{3} \\ y<6\end{gathered}$

Graphing Linear Inequalities in Two Variables

http://www.brightstorm.com/math/algebra/solving-and-graphing-inequalities/graphing-2-variable-inequalities http://www.khanacademy.org/video/graphing-inequalities-2?playlist=Developmental\ Math\ 2

Step 1. Solve the inequality so y is isolated on left side of inequality sign
Step 2. Plot the y intercept and find another point on boundary line using slope
Step 3. Draw boundary line (use "dashed line" if < or >; use "solid line" if \leq or \geq)
Step 4. Shade above boundary line if $>$ or \geq
Step 5. Shade below boundary line if $<$ or \leq
Ex3) Graph $2 x-5 y \geq 10$

$$
\begin{aligned}
& -5 y \geq-2 x+10 \\
& y \leq \frac{-2}{-5} x+\frac{10}{-5} \\
& y \leq \frac{2}{5} x-2
\end{aligned}
$$

Graph the following inequalities:

5. $y \geq 2$

6. $x<4$

Write the inequality for the graphs:

8.

5. Polynomials - Add/Subtract, Multiply

Suggested videos on polynomials:
http://brightstorm.com/math/algebra/polynomials-2
http://brightstorm.com/math/algebra-2/polynomials/dividing-polynomials-using-long-division
http://www.khanacademy.org/video/addition-and-subtraction-of-polynomials?playlist=ck12.org\ Algebra\ 1\ Examples
http://www.khanacademy.org/video/multiplication-of-polynomials?playlist=ck12.org\ Algebra\ 1\ Examples
http://www.khanacademy.org/video/polynomial-division?playlist=ck12.org\ Algebra\ 1\ Examples

Addition: Add like terms

$$
\text { Ex1) } \begin{gathered}
(4 x+6 y)+(2 x-3 y)= \\
(4 x+2 x)+(6 y-3 y)= \\
6 x+3 y
\end{gathered}
$$

Multiplication: Use the distributive property.

Ex3)

$$
7 y(-6 y-9)=7 y(-6 y)+7 y(-9)
$$

$$
=-42 y^{2}-63 y
$$

Subtraction: Add the additive inverse

$$
\begin{aligned}
& \left(x^{3}+2 x^{2}-8 x\right)-\left(-2 x^{2}+7 x-5\right)= \\
& \left(x^{3}+2 x^{2}-8 x\right)+\left(+2 x^{2}-7 x+5\right)= \\
& \left(x^{3}\right)+\left(2 x^{2}+2 x^{2}\right)+(-8 x-7 x)+(5)= \\
& \quad x^{3}+4 x^{2}-15 x+5
\end{aligned}
$$

Ex4)

$$
\begin{aligned}
(x+2)(x-5) & =x^{2}-5 x+2 x-10 \\
& =x^{2}-3 x-10
\end{aligned}
$$

*Recall FOIL (First-Outside-Inside-Last)

1. $\left(y^{2}+2 y-5\right)+\left(8 y^{2}-5 y+9\right)$
2. $\left(7 x^{3}-5 x^{2}-2\right)-\left(5 x^{3}-2 x^{2}+4\right)$
3. $-2 x y\left(6 x^{2}-4 x y+5 y^{2}\right)$
4. $(2 x-5)(3 x+2)$
5. $(2 x+3)(3 x+5)$
6. $(3 x-5)^{2}$

6. Factoring Polynomials

Suggested videos on factoring polynomials:
http://brightstorm.com/math/algebra/factoring-2
http://www.khanacademy.org/video/factoring-quadratic-expressions?playlist=ck12.org\ Algebra\ 1\ Examples

Perfect Square Trinomials $a^{2}+2 a b+b^{2}=(a+b)^{2}$ and $a^{2}-2 a b+b^{2}=(a-b)^{2}$
http://brightstorm.com/math/algebra/factoring-2/factoring-special-cases-part-i
Ex1) $x^{2}+4 x+4=(x+2)(x+2)=(x+2)^{2} \quad$ Ex2) $y^{2}-14 y+49=(y-7)(y-7)=(y-7)^{2}$
Ex3) $4 x^{2}-4 x y+y^{2}=(2 x-y)(2 x-y)=(2 x-y)^{2}$

Factor the following perfect square trinomials:

1. $x^{2}+6 x+9$
2. $y^{2}-16 y+64$
3. $x^{2}+4 x y+4 y^{2}$
4. $9 x^{2}-12 x y+4 y^{2}$

Trinomials $a x^{2}+b x+c, a=1$ (i.e., Lead Coefficient $=1$) Examples: $x^{2}+8 x+15$ and $x^{2}-4 x+3$ http://brightstorm.com/math/algebra/factoring-2/factoring-trinomials-a-equals-1

Example: Factor $x^{2}+2 x-15$
Step 1: Find the square root of the first term. The square root of the first term is x.
Step 2: Find all factors of the third term, -15 . The factors of the third term are: $\{-3,5\},\{3,-5\},\{-1,15\},\{1,-15\}$
Step 3: Decide which of these factors can be added to find the coefficient of the middle term.

$$
5+(-3)=2 \text {, so }\{-3,5\} \text { are the two factors needed to get the middle term. }
$$

Therefore, $(x-3)(x+5)$ are the two binomial factors. Check the answer by FOILing: $(x-3)(x+5)=x^{2}+2 x-15$
Ex4) $x^{2}+8 x+15=(x+5)(x+3)$
Ex5) $x^{2}-4 x+3=(x-3)(x-1)$

Ex6) $y^{2}+10 y-11=(y+11)(y-1)$

Factor the following trinomials:
5. $x^{2}+8 x+7$
6. $y^{2}-7 y+12$
7. $x^{2}-7 x+10$
8. $y^{2}+9 y-20$

Difference of Two Squares $a^{2}-b^{2}=(a+b)(a-b)$ Examples: $x^{2}-16$ and $4 x^{2}-25 y^{2}$ http://brightstorm.com/math/algebra/factoring-2/factoring-special-cases-part-i

Example: Factor $x^{2}-y^{2}$
Step 1: Find the square root of each term: $\sqrt{x^{2}}=x, \sqrt{y^{2}}=y$
Step 2: The first factor will be the SUM of these two square roots: $(x+y)$
Step 3: The second factor will be the DIFFERENCE of these two square roots: $(x-y)$
Therefore, $x^{2}-y^{2}=(x+y)(x-y)$
Ex11) $x^{2}-16=(x+4)(x-4)$
Ex12) $4 x^{2}-25 y^{2}=(2 x-5 y)(2 x+5 y)$
Ex13) $8 x^{2}-32=8\left(x^{2}-4\right)=8(x+2)(x-2)$
Ex14) $4-9 x^{2}=(2-3 x)(2+3 x)$

Factor the following difference of two squares:

13. $x^{2}-49$
14. $81 y^{2}-1$
15. $100-9 y^{2}$
16. $9 x^{2}-64 y^{2}$
